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Abstract
Aims/hypothesis Earlier studies have shown that skin autofluorescence measured with an AGE reader estimates the accumula-
tion of AGEs in the skin, which increases with ageing and is associated with the metabolic syndrome and type 2 diabetes. In the
present study, we examined whether the measurement of skin autofluorescence can predict 4 year risk of incident type 2 diabetes,
cardiovascular disease (CVD) and mortality in the general population.
Methods For this prospective analysis, we included 72,880 participants of the Dutch Lifelines Cohort Study, who underwent
baseline investigations between 2007 and 2013, had validated baseline skin autofluorescence values available and were not
known to have diabetes or CVD. Individuals were diagnosed with incident type 2 diabetes by self-report or by a fasting blood
glucose ≥7.0 mmol/l or HbA1c ≥48 mmol/mol (≥6.5%) at follow-up. Participants were diagnosed as having incident CVD
(myocardial infarction, coronary interventions, cerebrovascular accident, transient ischaemic attack, intermittent claudication
or vascular surgery) by self-report. Mortality was ascertained using the Municipal Personal Records Database.
Results After a median follow-up of 4 years (range 0.5–10 years), 1056 participants (1.4%) had developed type 2 diabetes, 1258
individuals (1.7%) were diagnosed with CVD, while 928 (1.3%) had died. Baseline skin autofluorescence was elevated in
participants with incident type 2 diabetes and/or CVD and in those who had died (all p < 0.001), compared with individuals
who survived and remained free of the two diseases. Skin autofluorescence predicted the development of type 2 diabetes, CVD
and mortality, independent of several traditional risk factors, such as the metabolic syndrome, glucose and HbA1c.
Conclusions/interpretation The non-invasive skin autofluorescence measurement is of clinical value for screening for future risk
of type 2 diabetes, CVD and mortality, independent of glycaemic measures and the metabolic syndrome.
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Abbreviations
AU Arbitrary units
CVD Cardiovascular disease
eGFR Estimated GFR
IQR Interquartile range
SAF Skin autofluorescence

Introduction

The worldwide prevalence of type 2 diabetes is increasing
rapidly; it is predicted to be close to 650 million in 2040.
Cardiovascular complications are the main drivers of in-
creased morbidity and premature mortality in diabetes [1–3].
Several risk factors, such as degree of obesity, fasting blood
glucose level and presence of the metabolic syndrome, predict
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the development of type 2 diabetes and cardiovascular disease
(CVD), and several risk scores have been developed to
increase the reliability of disease prediction [4–7].

In the last two decades, the role of AGEs in ageing and
the pathophysiology of diabetes-related complications has
been studied extensively. AGEs are formed in a multistep
process by glycation and oxidation of free amino groups
of proteins, lipids and nucleic acids. In addition to the
classic Maillard reaction, AGEs are formed through the
reaction of amino groups with α-dicarbonyls, such as
3-deoxyglucosone, methylglyoxal and glyoxal [8–10].
AGEs may form cross-links between tissue proteins in
the vascular wall, causing increased vascular stiffness
and elevated BP [11, 12]. Moreover, binding of circulating
AGE to its receptor (receptor for AGE [RAGE]) and
uptake into the vessel wall may accelerate the progression
of atherosclerosis [13, 14]. AGEs may also induce
beta cell damage by increasing inflammation and
oxidative stress and thereby contribute to worsening of
hyperglycaemia [15, 16].

The accumulation of AGEs can be assessed non-
invasively by measuring skin autofluorescence (SAF)
[17]. This method is based on the fluorescent properties
of certain AGEs accumulated in dermal tissue. Validation
studies have shown that SAF is strongly related to AGE
levels in skin biopsies [18]. SAF increases with ageing,
and is elevated in people with type 2 diabetes compared
with age-matched control individuals [19, 20]. We have
recently demonstrated that SAF is already elevated in
people without diabetes but with the metabolic syndrome

and is associated with its individual components [21].
SAF is strongly associated with long-term cardiovascular
complications and mortality in type 2 diabetes [19, 22–24].

Long-term prospective studies on the value of SAF
to predict development of type 2 diabetes, CVD and
mortality in the general population are lacking. However,
SAF was associated with increased mortality and
cardiovascular events in specific groups and, for example,
predicted amputations in individuals with peripheral artery
disease [25, 26].

Because of the promise of SAF as a valuable biomarker,
the goal of this study was to assess whether SAF was able
to predict the development of type 2 diabetes, CVD and
mortality in the general population. For this, we performed
an extensive prospective follow-up study of individuals
participating in the Dutch Lifelines Cohort Study.

Methods

Participants Participants from the Lifelines Cohort Study, a
large population-based study in the northern region of the
Netherlands (electronic supplementary material [ESM]
Methods), were included [27]. At baseline, both physical
examination and extensive questionnaire data were collected
[28]. All individuals providedwritten informed consent before
participating in the study, which was approved by the Medical
Ethics Review Committee of the University Medical Center
Groningen.
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For the present study, we evaluated 82,904 participants of
Western European descent between 18 and 90 years of age,
who underwent baseline investigations between 2007 and
2013, and for whom validated SAF measurement was avail-
able at baseline and prospective follow-up was performed
between January 2014 and January 2018. There were no rel-
evant differences in sex distribution, age and glycaemic vari-
ables between those with and without SAFmeasurements. We
excluded participants who, at baseline, had clinical CVD (n =
1861) and/or type 1 diabetes (n = 177) and/or type 2 diabetes
(n = 2557) or reported a history of gestational diabetes (n =
134) or MODY (n = 4). Furthermore, individuals with new
type 1 diabetes (n = 12) and a new history of gestational dia-
betes (n = 55) at follow-up were excluded, as well as those
without documented follow-up (n = 5530). This resulted in
72,880 individuals available for analyses (ESM Fig. 1). Of
these, 59,583 participated in the second screening, filled in
the follow-up questionnaires and underwent follow-up exam-
ination with detailed BP measurement and laboratory exami-
nations (ESMMethods), while only interim questionnaire da-
ta were available for 13,297 individuals. Median follow-up
was 4 years, with a range of 0.5–10 years, for a total of
274,629 participant-years (ESM Fig. 2). Median follow-up
for the 59,583 participants who had completed the second
screening visit and measurements was 4.1 years. Follow-up
measurements of fasting blood glucose and HbA1c were avail-
able for 55,759 (76.5%) and 56,086 (77%) participants,
respectively.

Clinical examinationAt both baseline and follow-up examina-
tion, participants completed a self-administered questionnaire
on medical history, past and current diseases, and health be-
haviour. Medication use was verified at baseline by a certified
research assistant and scored using the Anatomical
Therapeutic Chemical (ATC) Classification System.
Information regarding smoking behaviour (never, former
and current smoking) and quantity smoked, as well as coffee
consumption (cups/day), was collected from the question-
naires [29]. Weight was measured to the nearest 0.1 kg and
height and waist circumference to the nearest 0.5 cm, with
participants wearing light clothing and no shoes. BMI was
calculated as kg/m2. Systolic and diastolic BP and heart rate
were measured every minute for 10 min in the supine position
using an automated Dinamap monitor (GE Healthcare,
Freiburg, Germany). The average of the last three readings
was recorded for each BP variable and heart rate.

Skin autofluorescence SAF was measured non-invasively
using an AGE reader (Diagnoptics Technologies,
Groningen, the Netherlands), as described previously [17,
20]. The AGE reader illuminates a skin surface of approxi-
mately 4 cm2, guarded against surrounding light, with an ex-
citation light source with wavelength between 300 and

420 nm (peak intensity at ~370 nm). Emission light and
reflected excitation light from the skin are measured with an
internal spectrometer in the range 300–600 nm. SAF was
based on the ratio of the average emitted light intensity per
nm in the range 420–600 nm and the average reflected light
intensity per nm in the range 300–420 nm, multiplied by 100,
and is expressed in arbitrary units (AU), taking skin colour
into account [30]. Previous studies have shown an error rate of
5% when repeated SAF measurements were taken over a sin-
gle day in control participants and individuals with diabetes
[17]. More details about the number of machines and valida-
tion of measurements are given in the ESM Methods. Age-
adjusted SAF levels (z scores) were calculated separately for
men and women, based on the total population.

Biochemical measurements Blood samples were taken in the
fasting state between 08:00 and 10:00 hours and transported to
the laboratory facility at room temperature or 4°C, depending
on the sample requirements. On the same day, HbA1c (EDTA-
anticoagulated) was analysed using an NGSP-certified turbi-
dimetric inhibition immunoassay on a Cobas Integra 800 CTS
analyser (Roche Diagnostics Nederland, Almere, the
Netherlands). Serum creatinine was measured on a Roche
Modular P chemistry analyser (Roche, Basel, Switzerland)
and renal function was calculated as estimated (e)GFR with
the formula developed by the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) [31]. Total cholester-
ol and HDL-cholesterol were measured using an enzymatic
colorimetric method, triacylglycerol using a colorimetric UV
method, and LDL-cholesterol using an enzymatic method, on
a RocheModular P chemistry analyser (Roche). Fasting blood
glucose was measured using a hexokinase method.

Calculations, definitions and statistical analyses Diagnosis of
the metabolic syndrome was established if a participant at
baseline satisfied at least three out of five criteria according
to the modified guidelines of the National Cholesterol
Education Programs Adults Treatment Panel III (NCEP
ATPIII criteria): (1) systolic BP ≥130 mmHg and/or diastolic
BP ≥85 mmHg and/or use of antihypertensive medication; (2)
HDL-cholesterol levels <1.03 mmol/l in men and
<1.30 mmol/l in women and/or use of lipid-lowering medica-
tion influencing HDL-cholesterol levels; (3) triacylglycerol
levels ≥1.70 mmol/l and/or use of triacylglycerol-lowering
medication; (4) waist circumference ≥102 cm in men and
≥88 cm in women; (5) fasting glucose level ≥5.6 mmol/l
and/or use of blood glucose-lowering medication and/or diag-
nosis of type 2 diabetes [32]. Incident type 2 diabetes was
based on either self-report or fasting blood glucose
≥7.0 mmol/l and/or HbA1c ≥48 mmol/mol (≥6.5%) at
follow-up evaluation. Incident CVD was defined as present
when participants reported myocardial infarction, percutane-
ous transluminal coronary angioplasty (PTCA), stent
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positioning, coronary artery bypass grafting (CABG), tran-
sient ischaemic attack (TIA), cerebrovascular accident
(CVA), intermittent claudication or peripheral artery vascular
surgery. Vital status was ascertained with the Municipal
Personal Records Database (GBA). Data on cause of death
were not available. The incidence of type 2 diabetes, CVD
and mortality was calculated separately and as a composite
outcome for all age-decade groups (18–29, 30–39, 40–49,
50–59, 60–69, 70–79, ≥80 years)..

All analyses were conducted using PASW Statistics
(Version 22, IBM, Armonk, NY, USA). Data are presented
as mean ± SD, or median and interquartile range (IQR) when
not normally distributed. Means were compared between
groups with ANOVA. When variables were not normally dis-
tributed, medians were compared using the non-parametric
Mann–Whitney U test. The χ2 test was used to analyse cate-
gorical variables. Uni- and multivariate logistic regression
analyses were performed to examine the association between
SAF and the composite outcome of incident type 2 diabetes,
CVD and mortality, as well as these outcomes separately,
while adjusting for relevant clinical, biochemical and lifestyle
risk factors. In our models, we adjusted for the most important
determinants of SAF, i.e. age (model 1, used as a basic model),
additionally adjusted for presence of the metabolic syndrome
(model 2), glycaemic variables (model 3a/b), confounding
non-biochemical factors (model 4) and all relevant factors
(model 5). As age is an important factor influencing not only
SAF measurements, but also the absolute incidence of events,
we calculated the association between SAF and outcome ac-
cording to four clinically relevant age groups, considered as
low, intermediate, high and very high risk: ≤35 years; 36–
50 years; ≥51 years; and ≥61 years. Values of p < 0.05 were
considered statistically significant.

Results

Incidence of type 2 diabetes, CVD and mortality The inci-
dence of all outcomes is shown in Table 1. An individual
may have had more than one outcome. After a median
follow-up of 4 years, 1056 individuals had developed type 2
diabetes (1.4%). Of those, 525 reported that they had been
diagnosed with type 2 diabetes between the baseline visit
and the follow-up measurement, while in those not reporting
a diagnosis of diabetes, fasting blood glucose ≥7.0 mmol/l
was observed in 408 participants, elevated HbA1c

≥48 mmol/mol (≥6.5%) in 268, and either elevated blood glu-
cose or HbA1c in 531 participants.

Individuals with incident type 2 diabetes were significantly
older at baseline than participants who did not develop type 2
diabetes (51.8 ± 11.4 years vs 43.7 ± 12.0 years, p < 0.001),
and had a higher baseline BMI, fasting glucose and HbA1c

(all p < 0.001, Table 2). Moreover, the prevalence of the

metabolic syndrome was also higher. As expected, the inci-
dence of type 2 diabetes increased with age, and was between
3.3% and 4.1% in the three highest age decades (Fig. 1a).
Mean baseline SAF z score was 0.16 ± 0.95 in participants
with incident type 2 diabetes and −0.01 ± 0.81 in individuals
who remained healthy (p < 0.001, Fig. 2).

In the same population, 1258 individuals (1.7%) had de-
veloped CVD at follow-up (Table 1). Participants with inci-
dent CVD were significantly older at baseline, had a higher
waist circumference, higher systolic BP and diastolic BP,
higher lipid levels and a lower eGFR (p < 0.001, Table 2).
As expected, incidence of CVD increased with age, and was
between 4.5% and 11.6% in the three highest age decades
(Fig. 1b). Mean baseline SAF z score was 0.16 ± 0.96 among
the population with incident CVD vs −0.01 ± 0.81 in partici-
pants who did not develop CVD or type 2 diabetes (p < 0.001,
Fig. 2). In total, 55 individuals developed both type 2 diabetes
and CVD, and these had the highest baseline SAF z scores
(p < 0.001 vs no disease, p = 0.004 vs type 2 diabetes [in
women only], Fig. 2).

Death was reported in 928 individuals (1.3%). As expect-
ed, mortality increased with age (Fig. 1c). Participants who
died were older at baseline, had higher BP, were more likely to
have impaired renal function/low eGFR and were more fre-
quently current smokers. They also had higher SAF levels,
even when corrected for age, than individuals who developed
type 2 diabetes or CVD or remained without these disorders
(Table 2).

ESM Table 1 details the mean age and SAF levels accord-
ing to each age group. In almost all age groups, SAF was
significantly higher (p < 0.0001) in those participants who de-
veloped an event (the composite outcome of incident type 2
diabetes, CVD and mortality) compared with those who
remained free from these events.

Association and prediction Table 3 shows the results of the
univariate and multivariate associations between SAF and
clinical, biochemical and lifestyle factors and the composite

Table 1 Clinical endpoints as defined in the study

Clinical endpoint n

No type 2 diabetes, CVD or death 69,749

Incident type 2 diabetes only 977

Incident CVD only 1171

Deatha 874

Incident type 2 diabetes and CVD 55

Type 2 diabetes and death 22

CVD and death 30

Type 2 diabetes, CVD and death 2

72,880 participants in total
aWithout/before ascertainment of diabetes or CVD status
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outcome of incident type 2 diabetes, CVD and mortality.
Univariate analyses showed that SAF was strongly associated
with these outcomes (OR 3.84, 95% CI 3.57, 4.11, p = 1.5 ×
10−307). This association remained significant after adjusting
for age (model 1), age and the metabolic syndrome (model 2)
and also after adjusting for age, fasting glucose (OR 1.79,
95% CI 1.64, 1.96, p = 1.1 × 10−37) or HbA1c (OR 1.78,
95% CI 1.63, 1.95, p = 6.6 × 10−38). Additional regression
models revealed that the association also remained significant
when adjusted for sex, waist circumference and current
smoking (model 4), as well as all for other variables including
systolic BP, plasma lipids, eGFR and coffee consumption
(model 5, OR 1.54, 95% CI 1.40, 1.70, p = 3.9 × 10−18). In
the composite multivariate model 5, age, glucose, waist cir-
cumference, current smoking, systolic blood pressure and tri-
acylglycerol were most strongly associated with the compos-
ite outcome (Table 3).

Additionally, we assessed the relationship between SAF
and the three individual outcomes separately (Table 4). In a
univariate model, SAF was most strongly associated with

death (OR 5.10, 95% CI 4.56, 5.70, p = 4.1 × 10−181). This
association remained highly significant after adjusting for
age (model 1), presence of the metabolic syndrome (model
2), glycaemic variables (model 3a/b) and other possible con-
founding, non-biochemical factors (model 4). Model 5
showed that male sex, waist, systolic BP, cholesterol and cur-
rent smoking, in addition to SAF and age, were independently
associated with mortality. Similarly, univariate regression
analyses revealed SAF to be strongly associated with both
incident type 2 diabetes and incident CVD separately
(Table 4). In addition to SAF and age, the strongest predictors
of incident type 2 diabetes were fasting glucose, HbA1c, triac-
ylglycerol, BMI, waist circumference, BP and the presence of
the metabolic syndrome. The strongest univariate predictors
for CVD were—again in addition to SAF and age—waist
circumference, BMI, glucose, HbA1c, BP, eGFR and presence
of the metabolic syndrome. SAF remained significantly asso-
ciated with type 2 diabetes and incident CVD in the first four
multivariate models. Also in these multivariate models, the
presence of the metabolic syndrome, fasting glucose and

Table 2 Clinical characteristics
of the study population at baseline
in relation to outcome status

Characteristic Incident

None T2D CVD Death

Sex (n; male/female) 28,021/41728 524/532 637/621 489/439

Men (%) 40.2 49.6 50.6 52.7

Age (years) 43.7 ± 12.0 51.8 ± 11.4 54.2 ± 12.0 58.0 ± 12.7

BMI (kg/m2) 25.8 ± 4.1 29.7 ± 5.0 27.1 ± 4.0 26.8 ± 4.3

Waist (cm) 90 ± 12 101 ± 13 95 ± 12 95 ± 13

Systolic BP (mmHg) 125 ± 15 134 ± 16 133 ± 17 134 ± 18

Diastolic BP (mmHg) 74 ± 9 78 ± 10 77 ± 10 77 ± 10

Heart rate (bpm) 71 ± 11 73 ± 11 71 ± 11 71 ± 12

Creatinine (μmol/l) 73 ± 13 75 ± 15 76 ± 14 77 ± 22

eGFR (ml/min) 97 ± 15 92 ± 15 90 ± 15 87 ± 16

Total cholesterol (mmol/l) 5.1 ± 1.0 5.3 ± 1.0 5.4 ± 1.0 5.4 ± 1.0

HDL-cholesterol (mmol/l) 1.49 ± 0.39 1.29 ± 0.37 1.43 ± 0.40 1.46 ± 0.41

LDL-cholesterol (mmol/l) 3.2 ± 0.9 3.4 ± 0.9 3.6 ± 1.0 3.5 ± 0.9

Triacylglycerol (mmol/l) 0.96

(0.70–1.36)

1.41

(1.02–2.00)

1.16

(0.84–1.63)

1.12

(0.84–1.62)

Glucose (mmol/l) 4.9 ± 0.5 5.7 ± 0.7 5.1 ± 0.5 5.1 ± 0.5

HbA1c (mmol/mol) 36 ± 3 40 ± 4 38 ± 3 38 ± 4

HbA1c (%) 5.5 ± 0.3 5.9 ± 0.3 5.7 ± 0.3 5.7 ± 0.3

Current smokers (%) 20.4 22.3 25.8 26.9

Former smokers (%) 30.8 39.4 40.6 40.4

Metabolic syndrome (%) 12.8 57.5 25.1 25.6

Skin autofluorescence (AU) 1.90 ± 0.42 2.13 ± 0.45 2.18 ± 0.47 2.33 ± 0.52

SAF z score −0.01 ± 0.81 0.16 ± 0.95 0.16 ± 0.96 0.33 ± 1.13

Data are presented as mean ± SD, median (IQR), number or %

p < 0.001 vs the group without incident type 2 diabetes, CVD or death in all analyses (except heart rate) by ANOVA

T2DM, type 2 diabetes
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HbA1c levels was strongly associated with incident type 2
diabetes and moderately associated with incident CVD. In
the final model (model 5), SAF still was significant, and
age, glucose, waist circumference, male sex and triacyl-
glycerol were the strongest factors associated with incident
type 2 diabetes, and age, waist circumference, systolic BP
and current smoking were the strongest factors associated
with incident CVD.

As the time of death of all participants was recorded, we
were able to show the effect of SAF on time from baseline to
death. As can be seen in ESM Fig. 3, the highest SAF z score
tertile was associated with an almost twofold increased risk of
mortality compared with the other tertiles.

Finally, as age is an important factor influencing SAF mea-
surements, but also the absolute incidence of outcome events
(Fig. 1), we calculated the association between age-corrected
SAF score and outcome according to four clinically relevant
age groups (Table 5). SAF score was significantly associated
with the composite outcome and with mortality in all age
groups. For incident type 2 diabetes, in participants aged
≤35 years and those between 51 and 60 years SAF was not
significant. For CVD, there was no significant predictive val-
ue in the lowest age group probably because of the low num-
ber of events.

Discussion

This prospective study within the general population demon-
strates that SAF is significantly associated with new-onset
type 2 diabetes, CVD and mortality during a median follow-
up of 4 years. SAF predicted these combined outcomes inde-
pendently of several conventional risk factors, including age,
sex, waist circumference, the metabolic syndrome, smoking
status, fasting glucose and/or HbA1c.

Both fasting glucose and HbA1c were used to define type 2
diabetes at follow-up, which may have caused overestimation
of their predictive values. SAF also significantly predicted
mortality alone, even after correction for all relevant risk fac-
tors, such as age, sex, waist circumference and smoking.
Finally, SAFwas most strongly predictive in participants aged
36 and above, probably because of the low incidence of events
in the lowest age group (age ≤35 years, Table 5).
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Table 3 Univariate and multivariate logistic regression analyses for the composite primary outcome (incident type 2 diabetes, CVD or death) at a
median of 4 years’ follow-up

Analysis n OR 95% CI p value

Univariate

SAF (AU) 72,880 3.84 3.57, 4.11 1.5 × 10−307

Age (years) 72,880 1.07 1.07, 1.08 <1.0 × 10−350

Male sex (y/n) 72,880 1.53 1.42, 1.64 3.9 × 10−31

BMI (kg/m2) 72,866 1.10 1.09, 1.10 2.3 × 10−141

Waist circumference (cm) 72,866 1.05 1.04, 1.05 3.0 × 10−227

Glucose (mmol/l) 72,223 4.02 3.77, 4.29 <1.0 × 10−350

HbA1c (mmol/mol) 72,254 1.26 1.24, 1.27 <1.0 × 10−350

SBP (mmHg) 72,853 1.03 1.03, 1.04 1.0 × 10−199

DBP (mmHg) 72,853 1.04 1.04, 1.04 1.5 × 10−100

Heart rate (b/min) 72,853 1.00 1.00, 1.01 0.021

Cholesterol (mmol/l) 72,446 1.33 1.29, 1.38 5.8 × 10−60

Triacylglycerol (mmol/l) 72,446 1.35 1.31, 1.40 5.2 × 10−81

eGFR (ml/min) 72,423 0.97 0.97, 0.97 1.0 × 10−155

Former smoker (y/n) 72,127 1.51 1.40, 1.62 9.0 × 10−28

Current smoker (y/n) 72,127 1.29 1.19, 1.40 2.4 × 10−9

Coffee consumption (cups/day) 71,396 1.09 1.07, 1.11 1.3 × 10−27

Metabolic syndrome (y/n) 72,405 3.76 3.48, 4.06 1.5 × 10−250

Multivariate model 1a 72,880

SAF (AU) 1.88 1.72, 2.05 4.4 × 10−46

Age (years) 1.06 1.06, 1.06 1.4 × 10−241

Multivariate model 2b 72,405

SAF (AU) 1.77 1.62, 1.93 1.2 × 10−36

Age (years) 1.06 1.05, 1.06 1.8 × 10−209

Metabolic syndrome (y/n) 2.80 2.58, 3.03 3.1 × 10−142

Multivariate model 3ac 72,223

SAF (AU) 1.79 1.64, 1.96 1.1 × 10−37

Age (years) 1.05 1.05, 1.05 2.0 × 10−160

Glucose (mmol/l) 2.90 2.71, 3.11 1.7 × 10−210

Multivariate model 3bc 72,254

SAF (AU) 1.78 1.63, 1.95 6.6 × 10−38

Age (years) 1.05 1.04, 1.05 8.3 × 10−128

HbA1c (mmol/mol) 1.16 1.14, 1.17 1.3 × 10−126

Multivariate model 4d 72,113

SAF (AU) 1.55 1.41, 1.69 9.7 × 10−21

Age (years) 1.06 1.06, 1.07 7.7 × 10−229

Male sex (y/n) 1.10 1.02, 1.19 0.013

Waist circumference (cm) 1.04 1.03, 1.04 2.5 × 10−104

Current smoker (y/n) 1.62 1.48, 1.78 3.6 × 10−26

Multivariate model 5e 70,612

SAF (AU) 1.54 1.40, 1.70 3.9 × 10−18

Age (years) 1.06 1.05, 1.06 1.4 × 10−107

Glucose (mmol/l) 2.37 2.20, 2.55 1.3 × 10−112

Current smoker (y/n) 1.61 1.46, 1.77 8.3 × 10−23

Waist circumference (cm) 1.02 1.02, 1.02 2.6 × 10−26

Male sex (y/n) 0.93 0.86, 1.02 0.108

SBP (mmHg) 1.01 1.01, 1.01 3.6 × 10−10

Cholesterol (mmol/l) 0.93 0.89, 0.97 0.001
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The formation and accumulation of AGEs is increased in
individuals with diabetes as a result of chronic hyperglycaemia
and oxidative stress [8, 33]. In the present study, SAF levels were
already elevated at baseline before diagnosis of type 2 diabetes,
compared with people who remained normoglycaemic. Indeed,
previously we demonstrated that SAF levels were strongly cor-
related with presence of themetabolic syndrome, a cluster of risk
factors which is associated with increased risk of type 2 diabetes
[21]. This association has been confirmed in the present study.
However, SAF remained an independent predictor of incident
type 2 diabetes, even when adjusted for presence of the meta-
bolic syndrome at baseline. Our analyses also revealed that SAF
predicted incident type 2 diabetes when adjusted for fasting glu-
cose and HbA1c levels, and it remained significantly associated
even when adjusted for a large number of variables, including
glycaemic measures, age, waist circumference, BP, triacylglyc-
erol and eGFR.

Several earlier cross-sectional studies have assessed wheth-
er SAF is able to detect undiagnosed type 2 diabetes. Based on
various receiver operating characteristic curves, skin fluores-
cence measured with the Scout DS device had higher sensi-
tivity and specificity compared with fasting plasma glucose
and HbA1c in the detection of individuals with undiagnosed
abnormal glucose tolerance [34]. However, these analyses
were not corrected for important factors such as age, waist
circumference, glucose level and smoking status. Another
study compared an SAF decision model, based on age percen-
tiles, BMI and family history, with the Finnish Diabetes Risk
Score (FINDRISC) questionnaire and conventional risk
markers, including fasting plasma glucose and HbA1c, for
the detection of prevalent impaired glucose tolerance and di-
abetes [35]. Analyses in a subgroup of individuals, classified a
priori as intermediate risk, showed that the SAF-based deci-
sion model had a higher sensitivity and specificity compared
with fasting plasma glucose alone and the FINDRISC ques-
tionnaire, and had a performance equal to HbA1c. Finally, our

group recently demonstrated in the same Lifelines cohort that
measurement of SAF is of additional value to the FINDRISC
for detecting current undiagnosed diabetes [36].
Reclassification analysis showed that SAF reclassified 8–
15% of the total population into more accurate risk categories.

In the current study, SAF was also significantly associated
with a threefold increased risk of incident CVD. This associ-
ation remained significant after adjustment for age and sex, as
well as the metabolic syndrome, which includes presence of
elevated waist circumference, elevated BP, low HDL-
cholesterol and triacylglycerol, all well-known risk factors
for CVD [37, 38]. SAF remained significantly associated even
after adjustment for important CVD risk factors such as actual
BP levels, total cholesterol and current smoking. It has been
demonstrated that tobacco smoking is a strong risk factor for a
wide range of CVDs [39, 40]. Tobacco smoke is also an ex-
ogenous source of AGEs and increases oxidative stress
[41–43]; both active and passive smoking significantly in-
crease SAF [19, 20, 44]. This also suggests that the association
between smoking status and risk of CVD may, in part, be
explained by increased accumulation of AGEs as a result of
tobacco smoking. Also, it should be noted that baseline SAF
scores were the highest in individuals who developed both
type 2 diabetes and CVD (Fig. 2). Although this is a small
subgroup of only 55 participants, it supports the power of SAF
for predicting very-high-risk individuals.

The most striking finding was that SAF was associated
with a fivefold increased mortality risk in our univariate anal-
ysis. This association remained highly significant even after
correcting for several confounding factors, including those
described in the most extensive fifth model (Table 4). The
results in Table 5 showed high ORs that are highly significant
for all age groups. As this is the first study that evaluated the
effect of SAF in the general non-diabetic population, we have
no other study results for comparison. Although several cross-
sectional studies have demonstrated the association between

Table 3 (continued)

Analysis n OR 95% CI p value

Triacylglycerol (mmol/l) 1.15 1.10, 1.19 5.4 × 10−13

eGFR (ml/min) 1.00 1.00, 1.01 0.176

Coffee consumption (cups/day) 0.99 0.97, 1.00 0.135

Baseline risk factors were used to predict the median 4 year risk of the composite outcome of type 2 diabetes, CVD and death

SAF, age, glucose, HbA1c, waist circumference, systolic BP, cholesterol, triacylglycerol, eGFR and coffee consumption (cups/day) were defined as
continuous variables. Male sex, current smoker (vs never smoker) and the metabolic syndrome were defined as categorical variables
a Age-corrected
b Including the metabolic syndrome
c Including glycaemic measures
dWithout biochemical markers
eWith all variables

DBP, diastolic BP; SBP, systolic BP; y/n, yes/no
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Table 4 Univariate and multivariate logistic regression analyses for the separate primary outcomes (incident type 2 diabetes, CVD or death) at a
median of 4 year follow-up

Analysis New T2DM New CVD Death

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Univariate analysisa

SAF (AU) 2.74 (2.44, 3.07) 1.0 × 10−68 3.25 (2.93, 3.60) 2.5 × 10−111 5.10 (4.56, 5.70) 4.1 × 10−181

Age (years) 1.05 (1.05, 1.06) 1.5 × 10−91 1.07 (1.06, 1.07) 3.1 × 10−184 1.10 (1.09, 1.10) 3.4 × 10−239

Male sex (y/n) 1.45 (1.28, 1.64) 2.5 × 10−9 1.51 (1.35, 1.69) 4.3 × 10−13 1.64 (1.44, 1.87) 8.6 × 10−14

BMI (kg/m2) 1.16 (1.14, 1.17) 1.1 × 10−174 1.06 (1.05, 1.07) 3.3 × 10−22 1.05 (1.03, 1.06) 1.6 × 10−11

Waist (cm) 1.07 (1.06, 1.07) 9.2 × 10−195 1.03 (1.03, 1.04) 1.4 × 10−52 1.03 (1.03, 1.04) 4.4 × 10−37

Glucose (mmol/l) 12.5 (11.3, 13.9) <1.0 × 10−350 1.82 (1.64, 2.02) 8.2 × 10−30 2.20 (1.95, 2.47) 1.6 × 10−39

HbA1c (mmol/mol) 1.45 (1.43, 1.48) <1.0 × 10−350 1.15 (1.13, 1.17) 1.5 × 10−60 1.17 (1.15, 1.19) 6.6 × 10−57

SBP (mmHg) 1.03 (1.03, 1.04) 6.3 × 10−74 1.03 (1.03, 1.03) 6.9 × 10−73 1.03 (1.03, 1.04) 1.1 × 10−71

DBP (mmHg) 1.04 (1.04, 1.05) 2.7 × 10−43 1.04 (1.03, 1.04) 1.3 × 10−41 1.03 (1.03, 1.04) 1.4 × 10−23

Heart rate (bpm) 1.01 (1.01, 1.02) 7.1 × 10−5 1.00 (1.00, 1.01) 0.944 1.00 (0.99, 1.00) 0.883

Cholesterol (mmol/l) 1.20 (1.14, 1.28) 5.7 × 10−10 1.40 (1.33, 1.48) 5.9 × 10−37 1.33 (1.25, 1.41) 2.9 × 10−19

Triacylglycerol (mmol/l) 1.44 (1.39, 1.50) 1.1 × 10−72 1.20 (1.15, 1.26) 1.4 × 10−17 1.18 (1.12, 1.24) 1.9 × 10−10

eGFR (ml/min) 0.98 (0.98, 0.98) 1.5 × 10−24 0.97 (0.96, 0.97) 1.2 × 10−69 0.96 (0.95, 0.96) 6.8 × 10−91

Former smoker (y/n) 1.44 (1.27, 1.63) 1.1 × 10−8 1.52 (1.36, 1.70) 6.6 × 10−13 1.53 (1.34, 1.75) 3.9 × 10−10

Current smoker (y/n) 1.11 (0.96, 1.28) 0.172 1.34 (1.18, 1.52) 7.0 × 10−6 1.45 (1.25, 1.67) 8.4 × 10−7

Coffee (cups/day) 1.08 (1.06, 1.11) 1.8 × 10−9 1.09 (1.07, 1.12) 7.6 × 10−13 1.10 (1.07, 1.13) 1.0 × 10−10

Metabolic syndrome (y/n) 8.9 (7.9, 10.1) 6.6 × 10−262 2.14 (1.88, 2.43) 1.4 × 10−30 2.24 (1.93, 2.60) 3.8 × 10−26

Multivariate model 1a

SAF (AU) 1.64 (1.42, 1.90) 3.1 × 10−11 1.62 (1.41, 1.84) 1.5 × 10−12 2.37 (2.06, 2.73) 1.7 × 10−33

Age (years) 1.04 (1.04, 1.05) 3.5 × 10−44 1.06 (1.05, 1.06) 1.2 × 10−102 1.08 (1.07, 1.08) 2.4 × 10−127

Multivariate model 2b

SAF (AU) 1.43 (1.22, 1.66) 4.0 × 10−6 1.58 (1.38, 1.80) 3.1 × 10−11 2.32 (2.01, 2.67) 8.8 × 10−31

Age (years) 1.03 (1.03, 1.04) 3.5 × 10−26 1.06 (1.05, 1.06) 4.2 × 10−96 1.08 (1.07, 1.08) 3.1 × 10−122

Metabolic syndrome (y/n) 7.3 (6.4, 8.3) 4.3 × 10−208 1.54 (1.35, 1.76) 1.6 × 10−10 1.44 (1.23, 1.68) 4.0 × 10−6

Multivariate model 3ac

SAF (AU) 1.40 (1.20, 1.65) 3.0 × 10−5 1.60 (1.40, 1.83) 6.0 × 10−12 2.34 (2.03, 2.70) 1.9 × 10−31

Age (years) 1.02 (1.01, 1.02) 1.0 × 10−6 1.06 (1.05, 1.06) 2.4 × 10−93 1.08 (1.07, 1.08) 9.8 × 10−116

Glucose (mmol/l) 11.2 (10.0, 12.5) <1.0 × 10−350 1.20 (1.08, 1.34) 0.001 1.29 (1.14, 1.46) 7.2 × 10−5

Multivariate model 3bc

SAF (AU) 1.41 (1.21, 1.65) 8.0 × 10−6 1.58 (1.38, 1.81) 2.1 × 10−11 2.37 (2.06, 2.73) 1.4 × 10−32

Age (years) 1.01 (1.00, 1.01) 0.058 1.06 (1.05, 1.06) 1.5 × 10−79 1.08 (1.07, 1.08) 3.5 × 10−107

HbA1c (mmol/mol) 1.43 (1.40, 1.46) 1.0 × 10−265 1.05 (1.03, 1.06) 2.0 × 10−6 1.02 (1.00, 1.04) 0.035

Multivariate model 4d

SAF (AU) 1.32 (1.12, 1.54) 0.001 1.35 (1.18, 1.56) 2.1 × 10−5 1.98 (1.71, 2.30) 1.0 × 10−19

Age (years) 1.04 (1.03, 1.04) 1.1 × 10−33 1.06 (1.06, 1.07) 1.5 × 10−103 1.08 (1.08, 1.09) 3.6 × 10−134

Male sex (y/n) 0.91 (0.80, 1.04) 0.155 1.21 (1.07, 1.36) 0.002 1.32 (1.14, 1.52) 1.2 × 10−4

Waist (cm) 1.06 (1.06, 1.07) 1.4 × 10−153 1.02 (1.02, 1.02) 1.0 × 10−14 1.01 (1.01, 1.02) 7.3 × 10−5

Current smoker (y/n) 1.28 (1.10, 1.49) 0.002 1.70 (1.48, 1.94) 1.8 × 10−14 1.96 (1.68, 2.30) 5.0 × 10−17

Multivariate model 5e

SAF (AU) 1.26 (1.06, 1.48) 0.008 1.33 (1.16, 1.54) 6.0 × 10−5 1.96 (1.69, 2.28) 6.7 × 10−19

Age (years) 1.02 (1.02, 1.03) 3.8 × 10−8 1.06 (1.05, 1.06) 3.4 × 10−58 1.08 (1.08, 1.09) 9.1 × 10−84

Male sex (y/n) 0.65 (0.57, 0.75) 6.4 × 10−10 1.16 (1.03, 1.31) 0.019 1.25 (1.08, 1.44) 0.003

Waist (cm) 1.03 (1.02, 1.04) 1.2 × 10−26 1.02 (1.01, 1.02) 2.4 × 10−9 1.01 (1.00, 1.02) 0.009

Glucose (mmol/l) 8.9 (8.0, 10.0) 2.0 × 10−302 0.96 (0.85, 1.08) 0.458 1.10 (0.96, 1.26) 0.172

SBP (mmHg) 1.00 (1.00, 1.01) 0.175 1.01 (1.01, 1.01) 2.7 × 10−7 1.01 (1.00, 1.01) 4.5 × 10−4
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SAF and macro- and microvascular complications of type 2
diabetes, prospective studies regarding the predictive value of
SAF are scarce and limited to selected patient populations [19,

23, 24]. SAF has been shown to be a prognostic factor for
cardiac mortality in individuals with diabetes [45] and in those
receiving haemodialysis [46–48]. De Vos et al have shown that
SAF predicts all-cause mortality and major adverse cardiovas-
cular events in participants with peripheral artery disease after
5 years of follow-up [25]. Moreover, in the same patient popu-
lation, they found that SAF predicted lower limb amputation
independently of diabetes status and disease severity after
6 years of follow-up [26]. Addition of SAF to the Fontaine
classification, a method to assess severity of peripheral artery
disease, improved the prediction of amputation significantly.

Both previous and present findings support the clinical
utility of SAF as a first screening method for type 2 diabetes,
CVD and mortality. Other risk indicators, such as presence of
the metabolic syndrome, require more extensive measure-
ments, including a fasting blood sample to measure glucose,
HDL-cholesterol and triacylglycerol, but HbA1c solves the
need for measuring fasting glucose. The quick, non-invasive
measurement of SAF may even allow use in non-medical
settings or public locations such as supermarkets, pharmacies
or drug stores as a first estimate of risk. The AGE reader in the
present study may be used to calculate SAF percentiles using
measurements in healthy participants, based on the data from
Koetsier et al [20]. The present version of the device can
account for both age and sex, but BMI and smoking status
might also be accounted for, to produce a more balanced in-
terpretation of the SAF value.

Strengths and limitationsWe have presented data from a pro-
spective population-based study that included almost 73,000
participants within a broad range of age and cardiovascular
risk. This is the first prospective study to examine SAF as a
predictor for type 2 diabetes, CVD andmortality in the general
population. Although Lifelines extensively collected informa-
tion on medication use at baseline, unfortunately no data were

Table 5 Predictive value of age-corrected SAF score for the composite
outcome and the three individual outcomes according to participants’
baseline age

Outcome n n (%) events OR SAF z score p value

Composite

Age (years)

≤35 17,412 144 (0.8) 1.86 (1.13, 3.06) 0.014

36–50 36,963 1272 (3.4) 2.02 (1.76, 2.32) 2.1 × 10−23

51–60 10,605 651 (6.1) 1.70 (1.40, 2.06) 6.8 × 10−8

≥61 7900 1064 (13.5) 1.84 (1.60, 2.12) 2.1 × 10−17

Type 2 diabetes

Age (years)

≤35 17,412 66 (0.4) 1.53 (0.71, 3.29) 0.277

36–50 36,963 489 (1.3) 2.03 (1.64, 2.52) 8.8 × 10−11

51–60 10,605 230 (2.2) 1.28 (0.92, 1.79) 0.140

≥61 7900 271 (3.4) 1.39 (1.07, 1.80) 0.014

CVD

Age (years)

≤35 17,412 53 (0.3) 1.56 (0.66, 3.71) 0.310

36–50 36,963 502 (1.4) 1.52 (1.21, 1.92) 3.1 × 10−4

51–60 10,605 284 (2.7) 1.62 (1.22, 2.15) 0.001

≥61 7900 419 (5.3) 1.68 (1.37, 2.06) 7.8 × 10−7

Mortality

Age (years)

≤35 17,412 25 (0.1) 3.45 (1.41, 8.44) 0.007

36–50 36,963 306 (0.8) 2.78 (2.18, 3.54) 1.8 × 10−16

51–60 10,605 164 (1.6) 2.47 (1.75, 3.49) 3.0 × 10−7

≥61 7900 433 (5.5) 2.13 (1.75, 2.60) 7.7 × 10−14

ORs are shown with 95% CIs

Table 4 (continued)

Analysis New T2DM New CVD Death

OR (95% CI) p value OR (95% CI) p value OR (95% CI) p value

Cholesterol (mmol/l) 0.84 (0.78, 0.90) 9.4 × 10−7 1.05 (0.99, 1.11) 0.149 0.91 (0.85, 0.98) 0.014

Triacylglycerol (mmol/l) 1.24 (1.18, 1.30) 9.9 × 10−19 1.06 (0.99, 1.13) 0.088 1.05 (0.96, 1.14) 0.275

eGFR (ml/min) 1.00 (1.00, 1.01) 0.120 1.00 (0.99, 1.00) 0.706 1.00 (1.00, 1.01) 0.641

Current smoker (y/n) 1.22 (1.04, 1.44) 0.017 1.69 (1.47, 1.94) 7.7 × 10−14 1.96 (1.67, 2.30) 1.5 × 10−16

a Age-corrected
b Including the metabolic syndrome
c Including glycaemic measures
dWithout biochemical markers
eWith all variables

DBP, diastolic BP; SBP, systolic BP; T2DM, type 2 diabetes; y/n, yes/no
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available on the use of new medications or changes in medi-
cations, as this information was not included in the follow-up
questionnaires. Medication use, in particular oral blood-
glucose-lowering agents and/or insulin, can validate self-
reported diagnosis of type 2 diabetes, or even ascertain the
presence of diabetes when a participant does not report diabe-
tes correctly in the questionnaire. Also, data regarding the
exact time of diabetes diagnosis and CVD events were not
collected. As a consequence, we were not able to perform
survival analyses for both diseases. We do not have follow-
up blood glucose or HbA1c measurements for 16,720 partici-
pants. This may underestimate the incidence of type 2 diabe-
tes, and could alter the effects described.

As the study has been performed in people of Western
European descent, the results may not be generalisable to oth-
er populations.

Finally, future studies need to incorporate the specific cause
of death in order to further refine the predictive power of SAF.

Conclusions This is the first prospective study in the general
population to show the predictive value of SAF for incident type
2 diabetes, CVD and mortality. SAF significantly predicted the
risk of these outcomes independently of several conventional
risk factors. A longer follow-up of Lifelines participants will
allow further validation and will expand the present findings.
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